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Abstract
GriPhyN (Grid Physics Network) is a large research project to develop virtual data and Data Grid technologies and apply them to large-scale data-intensive science in the 21st century. SDSS (Sloan Digital Sky Survey) is the most ambitious astronomical survey project ever undertaken, which aims to map one quarter of the entire sky. The cluster finding process is to find clusters of galaxies, the largest bound structures of the universe, from images taken by specially designed telescope. Cluster finding is fundamental to the study of the structure of the universe. The computation involves large amount of data, and the core algorithm is compute-intensive.
We built a virtual galaxy cluster system by applying the GriPhyN virtual data toolkit to the cluster finding algorithm. The system acts in a data driven mode where upon a request for cluster information in a sky region, the system can either return the information directly if it is already computed and stored in the cluster catalog, or generate the DAG (directed Acyclic Graph) and schedule grid computation to derive the cluster information.

The system was tested in a data grid, which consists of three Condor pools at University of Chicago, Argonne National Laboratory and Fermilab. We present here the results of the test, and the experience we had in building the system.
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Introduction

The GriPhyN (Grid Physics Network) project is to implement petabyte-scale computational environments for data intensive science in the 21st century. The project is driven by the demands to access and share large collections of scientific data as well as complex processes to analyze the data, which arise initially from the four physics experiments involved in this project but will also be fundamental to science and commerce in the 21st century.
The four physics experiments are about to enter a new era of exploration of the fundamental forces of nature and the structure of the universe. The CMS and ATLAS experiments at the Large Hadron Collider (LHC) at CERN will search for the origins of mass and probe matter at the smallest length scales; LIGO (Laser Interferometer Gravitational-wave Observatory) will detect the gravitational waves of pulsars, supernovae and in-spiraling binary stars; and SDSS (Sloan Digital Sky Survey) will carry out an automated sky survey enabling systematic studies of stars, galaxies, nebula, and large-scale structure [1].

The GriPhyN virtual data toolkit (VDT) is the implementation of virtual data technologies. Virtual data explores two concepts: location transparency, whereby data are requested without knowledge of the physical data location, and materialization transparency, whereby data are requested without regard to whether it must be computed first. The current release of VDT includes the Globus Toolkit [8], Condor [13], and GDMP [16].

In this article we use in particular a new tool to be included in the next VDT release, the Chimera virtual data system [11]. Chimera is designed to allow the capture and reuse of information on how data was, or could be, generated by computations. It comprises a virtual data catalog, used to record virtual data information, plus a virtual data language interpreter that translates data definition and query operations expressed in a virtual data language (VDL) into virtual data catalog operations.

We describe here the virtual galaxy cluster system we build by applying the GriPhyN virtual data toolkit to the SDSS cluster finding problem. The system encodes the cluster finding algorithms in VDL, and upon a request for cluster information in a sky area, schedules grid computation to identify clusters in that area.
The rest of the paper is organized as follows. In section 2, we give a brief overview of SDSS and VDT. In section 3, we describe cluster-finding algorithm and the application of virtual data concept. In section 4 we give the details of system architecture and implementation. We discuss the experience and implication of the integration in section 5. We talk a little bit about the knowledge-based representation of virtual data in section 6, and we conclude with future directions and discussions in section 7.

1 Overview

In this section, we firstly give a brief overview of Sloan Digital Sky Survey, and introduce some basic astronomical terms. Then we give a brief description for each of the components in the GriPhyN virtual data toolkit.
1.1 Sloan Digital Sky Survey

The goal of the Sloan Digital Sky Survey is to map one-quarter of the entire sky, producing a detailed image of it and determining the positions and absolute brightness of more than 100 million celestial objects. It will also measure the distance to a million of the nearest galaxies, and to 100,000 quasars, the most distant objects known. The results of the SDSS will be electronically available to the scientific community and the general public, both as images and as precise catalogs of all objects discovered [3]

 REF _Ref7592973 \r \h 
[22].

The survey is performed at Apache Point Observatory in Sunspot, New Mexico, where the specially designed wide field 2.5-meter telescope is sited, along with its 0.5-meter photometric telescope and with instruments built by Princeton University and John Hopkins University. 

The main telescope achieves a very wide (3°) distortion-free field by the use of a large secondary mirror and two corrector lenses. It is equipped with the photometric/astrometric mosaic camera. The 0.5-meter telescope monitors subtle changes in the atmospheric temperature and pressure during the course of the survey. This information allows astronomers to calibrate an object's brightness as measured with the main telescope. Other two instruments, a seeing monitor and a 10µm cloud scanner monitor the astronomical weather.

[image: image1.png]
Figure 1: SDSS Camera

The SDSS imaging camera contains two sets of CCD arrays: the imaging array and the astrometric arrays. The imaging array consists of 30 2048×2048 Tektronix CCDs, placed in an array of 6 columns and 5 rows. The five rows are five different color filters, in the sequence of r´, i´, u´, z´ and g´, with effective wavelengths of 3590Å, 4810 Å, 6230 Å, 7640 Å and 9060 Å. The camera also contains leading and trailing astrometric arrays -- narrow (128 × 2048) r´-filtered CCDs covering the entire width of the camera. These arrays can measure objects in the magnitude range r´ ~ 8.5 - 16.8, i.e. they cover the dynamic range between the standard astrometric catalog stars and the brightest unsaturated stars in the photometric array.

Photons from the stars hit the telescope's detectors, and CCDs collect them. Charged “buckets” are then converted to digitized signals and written to tapes. The tapes are shipped via express courier to Fermilab, where the data goes into various data-processing pipelines constructed by Princeton University, University of Chicago, the US Naval Observatory, Fermilab, and John Hopkins University. Out of the pipelines comes information about the stars, galaxies and quasars, for inclusion in the Operational Database, which are further processed to produce catalogs of these objects. When complete, the survey data will occupy about 40 terabytes (TB) of image data, and about 3 TB of catalog data.

Now we introduce a few terms related to the survey. A run is the set of data collected from one continuous pass of the 2.5-meter telescope across the sky. Typically, a run lasts for a few hours. Since the camera contains six columns (camcols), the result is a long strip of six scanlines, containing almost simultaneously observed five-color data for each of the six CCD columns. Two successive scans, offset by almost a CCD width, are performed to image a given area of sky, to fill in a 2.54° wide stripe.

The data stream from a single CCD in a scanline is cut into a series of frames that measure 2048 x 1489 pixels and overlap 10% with the adjacent frames. The frames in the 5 filters for the same part of the sky are called a field.
1.2 Galaxy Clusters 

Before introducing what is a galaxy cluster, let’s first look at some astronomy and astrophysics terminology:

1.2.1 Terminology

Celestial Sphere: The celestial sphere is an imaginary sphere that surrounds the earth. The sphere rotates about an axis, which runs through the center of the Earth, in the opposite direction to the real motion of the Earth. Positions of the stars are fixed on the celestial sphere and are given in right ascension (RA) and declination (Dec), which are roughly equivalent to latitude and longitude on Earth. RA is measured in hours, minutes and seconds, either east or west, from the point where the ecliptic crosses the celestial equator at the vernal equinox. Declination is measured north or south from the celestial equator in degrees, arc-minutes and arc-seconds.

Parsec (pc): A parsec (parallax arc-second) is a measure of distance used by astronomers. One parsec is 3.26 light-years, or 3.1x1016 meters. It is defined as the distance to a star that exhibits a parallax angle of 1 arc-second. 

Hubble’s Law: American astronomer Edwin Hubble in 1929 discovered that the recession speed of galaxies (v) was directly proportional to their distance (d). This is what we call the Hubble's Law which defines that v = H0 x d, whereby H0 stands for Hubble's constant. According to Hubble's Law, as long we can measure the speed at which a galaxy recedes, we can determine its distance from us, and vice versa. 
Redshift: If a light source is moving away from us, due to the Doppler effect, the wavelength of the light lengthens and the light shifts to the red side, which is called "redshift". Therefore, instead of measuring the receding velocity of a galaxy directly, astronomers measure the wavelength change of the light emitted from the galaxy. 

Galaxy Cluster: The observable universe is actually an assembly of up to 100 billion galaxies, of which some are much larger than our own Milky Way. Like stars, galaxies also tend to clump together to form a larger structure, which is referred to as a galaxy cluster or simply, "cluster". Under the influence of gravity, the galaxies in a cluster move, much like the thermal motions of atoms in a hot gas. Clusters are typically tens of million of light years across, and a large cluster, such as the Virgo cluster shown in Figure 2, can collect thousands of galaxies.
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Figure 2 The Virgo Cluster

1.2.2 Cluster Finding

Cluster finding is very fundamental to astrophysics. By applying a variety of data processing and data analysis algorithms to the large amount of digitized data, astrophysists can identify clusters of galaxies, count the number of galaxies in a cluster, and compute different features of the clusters. The information gathered from cluster finding can help to search for the value of H0, to probe of the evolution of the universe, to measure the amount of dark matter, to decide the mass density, etc. 

Currently cluster finding is done in production mode, where a cluster catalog is generated against all existing data. The basic procedure is for each galaxy in the galaxy catalog, count the number of galaxies that are within some range of the galaxy, this is a N2 problem. The process can be both compute-intensive and data-intensive; we show the scale of the problem in Table 1.

	Sky Area
	7000 square degree

	Storage
	1.54 terabytes

	Compute
	7000 CPU-hours (500MHZ PIII, 1G RAM)


Table 1 Computation and Storage Requirement of Cluster Finding in Full SDSS

There are also other challenge issues as regarding the cluster finding procedure:

· There are many different ways to identify clusters of galaxies. SDSS now is exploring 6 different cluster catalogs, and each of them is evolving.

· Each algorithm involves many stages, and has different set of parameters to control and tune the algorithm. Scientists need a way to keep track of the process and to easily adjust the parameters according to features of interest.

· On-demand data generation, where some of the sky area is of special interest or only small regions are selected to test an algorithm or a parameter set.

· End users only care about information of clusters in an area or near a spatial coordinate (RA, Dec). The mapping to image files and other intermediate files, and the complicated steps taken to get the information should be transparent.

The above-mentioned challenges make the cluster finding a perfect example for exploring virtual data concept and grid computation.

1.3 The GriPhyN Virtual Data Toolkit
The VDT is a toolkit that facilitates the installation and application of virtual data technologies to science. The current release VDT 1.0 includes the Globus toolkit, Condor and GDMP (Grid Data Mirroring Package).
The Globus toolkit is a set of software tools to build computational grids and grid applications. It includes tools and libraries for solving problems in the following areas: security, information services, data management and resource management [2]. Condor can harness computation resources in a network, and GDMP is a generic file replication tool that replicates files securely and efficiently from one site to another in a Data Grid environment. 
We use specifically a new tool to be included in the next release VDT, the Chimera virtual data system [11]. Chimera has been developed as a prototype implementation of virtual data system for large-scale physics experiments and data-intensive applications. The concept of virtual data is introduced to facilitate data access and analysis in a virtualized manner, that is, data is referred to with both location transparency and materialization transparency.
Loation transparency means that data can be requested without any knowledge about the physical data location. This is realized by replication service, which maps virtual data reference to specific physical locations. 
Materialization transparency means that data can be requested without regard to whether it already exists, or must be computed. The system keeps track of the computation procedures used to derive data products, so that the computation can be carried out in an automated way, to create or re-create data products.
1.3.1 Virtual Data Catalogs

A virtual data system needs to keep track of various physical locations of a virtual data product, as well as the associated computation to materialize the virtual data product. The virtual data catalog architecture is outlined in [9], in which the following virtual data catalogs (VDC) are identified:

· Metadata Catalog (MDC): A metadata catalog maintains a mapping from entity name (e.g., data object name or logical file name) to entity attributes.

· Transformation Catalog (TC). A transformation is an executable program or procedure. Associated with a transformation is both information that might be used to characterize and locate it (e.g., author, method, cost) and information needed to invoke it (e.g., executable name, location, arguments, and environment).

· Derived Data Catalog (DDC), which keeps derivation-specific information of data products. A derivation represents an invocation of a transformation. Associated with a derivation is the name of the associated transformation, the names of data objects to which the transformation is applied, and other information such as values for parameters, execution time, etc. 
· Replica Catalog (RC), which maintains information about the physical locations of objects or files.

1.3.2 Virtual Data Grid

Virtual data system runs in a data grid environment. Figure 3 shows the data grid architecture [6], in which virtual data catalogs are referred to as the catalog service. An application makes requests for data derivation, in the form of abstract DAGs. In the DAG (Directed Acyclic Graph), each node is a procedure to be performed, and each edge specifies the workflow from one procedure to another procedure. The term “abstract” is used because data objects are referred to by logical file names, without regarding their physical existence or physical locations, and the computations are not yet bound to specific sites within the grid. 

The job of the request planner is to examine the abstract DAG, select the site of execution of each node of the DAG, and then determine how to obtain and transport the data needed by and produced by each transformation execution. The planner may evaluate several different execution plans, varying the location of computations and data movement vs. recreation decisions. The output of the request planner, a “concrete” DAG, refers only to real physical file names, and contains explicit steps to derive or transport data objects that do not yet exist at the execution site.

The executor takes the concrete DAG generated by the planner and calls upon other services such as the reliable transfer service and compute services to carry out the computation.
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Figure 3 Data Grid Architecture

1.3.3 Virtual Data Schema

The current release of Chimera uses a relational database schema to represent the structures and relations of virtual data catalogs. The schema is shown in Figure 4 described in UML:
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Figure 4 VDS Database Schemas
A transformation is described by the executable name and any number of formal parameters.  A derivation is an instantiation of a transformation, which passes actual parameters to the transformation. The value of the actual parameter captures either a logical filename (LFN) or the value of a non-file parameter.

The replica catalog is simplified to only keep the mappings from LFNs to PFNs, each LFN has one or more replicas. The matadata catalog is also simplified to keep (key, value) attribute pairs to LFNs, each LFN can have multiple attributes associated with it.

1.3.4 Virtual Data Language

The virtual data language (VDL) is defined to populate the database and query information stored in the database. VDL-0 defines a set of very rudimentary statements. Let’s first look at a simple example, which defines the process of concatenating two files into one file.

begin  v  /bin/cat

    arg –n

    file   i   file1

    file   i   file2

    stdout   file3

end



rc  file1  /usr/a.txt

rc  file2  /usr/b.txt

rc  file3  /usr/c.txt

With the  “begin” statement, a transaction in the database is started, defining and changing each of the table as required along the way. The letter “v” stands for the condor universe “vanilla” that the job will run in. Other universe specifications are list in Table 2. We will introduce condor and DAGMan in more detail in section 2.3.6. 

	Letter
	Condor Universe
	Description

	v
	vanilla
	Any kind of executable

	s
	standard
	Condor-compiled migratable executable

	S
	scheduler
	Executables that run in DAGMan’s universe

	p
	pvm
	

	g
	globus
	

	m
	mpi
	


Table 2: Universe specifications
Following the universe is the executable for the transformation. And within the block, file arguments and non-file parameters including environment information for the transformation can be specified. The “rc” statement fills the replica catalog; it allows for specifying one or more physical files for a logical file. There are many other statements; here we’ll only introduce some of them:

dag: Given an LFN, the “dag” command generates a DAG and matching job descriptions from the dependencies stored in the database, which can be then submitted to create the file. The algorithm for creating the DAG is a reverse depth first tree traversal: firstly find which transformation contains this file as output, then for each input of the transformation, find the transformation that contains it as output, and the process goes recursively until all the dependencies are resolved.

submit: Once DAG is generated, it can be submitted to the Grid system which dynamically schedules distributed computations to create the requested file.

load/save: VDS supports interactive mode, where each statement is typed in. It also supports script mode, where statements can be loaded from or saved to files, in the same way they would be typed in. 

1.3.5 Virtual Data Language Interpreter
The virtual data language interpreter acts as the translator, which reads in the descriptions of various transformations and derivations specified in VDL, stores them in the backend database. The system also handles virtual data requests, generates the DAG, and submits the job to the grid, which schedules storage resources and computation resources to derive the data, and finally returns the data to the user.

1.3.6 Condor and DAGMan

Condor is a High Throughput Computing environment, which can effectively utilize the computing power of large collections of workstations in a network. Hundreds of jobs can be submitted to Condor with one command, and condor finds available machines on the network to run these jobs. Condor can checkpoint and migrate a job to guarantee its completion. Condor also features powerful resource management by matchmaking resource owners with resource consumers [13]. 

The Directed Acyclic Cgraph Manager (DAGMan) is a meta-scheduler for Condor jobs. DAGMan submits jobs to Condor in an order defined by a DAG, and it is responsible for scheduling, recovery, and reporting for the set of jobs submitted to Condor [15].

The DAG specifies three items:

· A list of the programs in the DAG, with the name of each program and its Condor submit description file

· Pre-script and post-script of a program

· Dependencies between programs

A sample diamond DAG is given here to illustrate the DAG:

	# Filename: diamond.dag

Job
A
A.sub

Job
B
B.sub

Job
C
C.sub D

Job
D
D.sub

PARENT  A  CHILD  B C

PARENT  B  C  CHILD D
	[image: image20.png]
	# Filename: A.sub

Executable  = diamond_a

Universe     = vanilla

Output         = A.out

Error            = A.err

Log              = A.log

Notification   = Never

Queue


2 Virtual Cluster Catalog

We apply virtual data concept to the SDSS cluster finding challenge and build a virtual galaxy cluster system. We describe each of the transformations and its parameters, input and output files, as well as the inter-dependencies of the transformations in VDL, and we change the production mode into a data-driven mode, where given a request for cluster information, the system can either retrieve the information from the cluster catalog if it is already computed, or start a grid computation to generate it on the fly. 

2.1 Cluster Finding Algorithm

The code of the cluster finding algorithm is written in tcl, and it runs in astrotools, the SDSS software package, which is a collection of C extensions to TCL, arranged in a layered fashion over a set of public domain software packages. The essential part of the algorithm is called maxBcg, it gets the name from “MAXimum likelihood determination of the Brightest Cluster Galaxy”. The algorithm walks through a five-dimension space, which includes:

· Two spatial dimensions, Right Ascension (RA) and Declination (Dec)
· Two color dimensions, g-r and r-i

· One brightness dimension, i

For the spatial dimensions, calculations are performed at the location of each galaxy. It would still be rather expensive if we perform a purely statistical search in the two color dimensions and the brightness dimension. However, the majority of cluster galaxies follow certain distributions (a track) in these three dimensions. The likelihood is computed by calculating how much the observed properties of a galaxy match the known properties of brightest cluster galaxies at some given redshift.
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Figure 5 MaxBcg Algorithm
The blue dotted line in Figure 5 shows the projection of the track onto the two most useful projections, g-r vs. i and r-i vs. g-r. The image is of a single field, the red circle shows a radius of 0.5 Megaparsec (Mpc), and only objects inside the radius show up as black dots in the middle and the right plots. In the middle color-magnitude plot, the red horizontal lines show the acceptance window in color and brightness; the red ellipse shows the mean and 2( dispersion of brightest cluster galaxies at the redshift. In the right color-color plot, the red circle shows the allowed colors of galaxies at the redshift.  
We describe the algorithm in the following pseudo-codes:

Define the likelihood (2 = ((i /(i)2 + (((g-r) /((g-r))2 + (((r-i) /((r-i))2  and the color acceptance window to be abs ((g-r)  <= 2((g-r) and abs ((r-i) <= 2((r-i). Then,

brgSearch:

for each galaxy {

 
loop over all redshifts z {

calculate the likelihood ( for the target galaxy;

}
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{

max

arg

*

c

z

z

=

;

write ( , z* and other properties;
}

bcgSearch:

for each galaxy {


if  ( ( from brgSearch > threshold ) {

 

loop over all redshifts z {

calculate the likelihood ( for the target galaxy;
Ngals = 0;

for each galaxy in the buffer zone {

if  ( within 1 Mpc and inside color acceptance window ) { 
Ngals = Ngals +1; 
}

}
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}
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{

max

arg

*

c

z

z

=

;

}

write ( , z* and other properties;

}

bcgCoalesce:

for each galaxy t {


for each galaxy b in the buffer zone {



if ( within 1 Mpc and abs (zb* - zt*)  < 0.05 ) {  add (b to list; }

}


if  ( ( t  > max{(b } ) { note galaxy t as cluster center; }

}

2.2 Transformations and Data Flows

The algorithm comprises a series of transformations, each of which takes inputs, makes computation, and creates new output files. We give a brief description about each of these stages:

1 fieldPrep: The first stage, which extracts from the full data set the galaxies, and only those measurements on the galaxies of interest and then produces new files containing this data. The new files are about 40 times smaller than the full data set.

2 brgSearch: Calculate the unweighted BCG likelihood for each galaxy. The unweighted likelihood may be used to filter out unlikely candidates for the next stage.

3 bcgSearch: Calculate the weighted BCG likelihood for each galaxy. This is the heart of the algorithm, and most expensive.

4 bcgCoalesce: Is this galaxy the most likely galaxy in the neighborhood?

5 getCatalog: Remove extraneous data, and store in a compact format.

We use VDL to describe each of the five stages and its parameters. The input files and output files of each stage form a natural dependency graph. The data flows in the stages are shown as in Figure 6. The number in each block arrow stands for the stage number.

The first stage and second stage are straightforward in that each output file corresponds to one input file. Each of the files has specific run, camcol and field numbers, and it is named accordingly (e. g. “tsObj-run-camcol-field.fit”). 


Figure 6 Data Flow in Cluster Finding Algorithm
The third and fourth stages, as describe before, require to work on a buffer zone around the target, and the bcgSearch needs to take both field files and brg files as inputs. The VDL description of the bcgSearch stage is shown as follows:

Begin v @@vdldemo@@/bin/astro.sh


Arg
bcgSearch


Arg
$run


Arg
$otherRun


Arg
$startField


Arg
$endField


Arg
%runList


Arg
%camcolList 


File
o
cores-%run-%camcol-%field.par


File
i
parameters.par


File
i
field-%run-%camcol -%field.par


File
i
brg-%run-%camcol-%field.par

End

rc
parameters.par
parameters.par

rc
cores-%run-%camcol-%field.par
$coreDir/cores-%run-%camcol-%field.par

rc
field-%run-%camcol -%field.par
$fieldDir/field-%run-%camcol -%field.par

rc
brg-%run-%camcol-%field.par
$brgDir/brg-%run-%camcol-%field.par

We borrow the scalar symbol “$” and list symbol “%” from Perl to denote the required parameters and files. In practice, they are all replaced by values and filenames. 

3 System Architecture

We build an experimental virtual cluster system based on virtual data concept and cluster finding algorithm. The system works in the way described below:

Given a display of the sky with areas highlighted in three ways (Clusters found, data exists, and no data), the user picks an area and the system will make a plot of the clusters in that area. This involves the following steps:

· Drawing a box on the sky image

· Computing the bounding box in spatial coordinates

· Creating sub-bounding boxes where cluster catalogs don’t exist

· Finding sub-bounding boxes where galaxy data does exist

· Making request to VDS to compute the DAG necessary to calculate the cluster catalog in those sub-bounding boxes

· Managing the computation

· Updating the cluster catalog

· Displaying the cluster catalog at the user interface

Figure 7 Virtual Cluster System Architecture
3.1 User Interface

The user interface presents a sky image to the user. Upon selection of a region, the user interface computes the RA and Dec bounding box of the region and a SQL request is constructed. The SQL request is sent to the virtual cluster catalog, which returns the results in XML to ggobi, a data visualization system for viewing high-dimensional data [5].
3.2 Virtual Cluster Catalog

The virtual cluster catalog (VCC) holds the derived cluster catalog information. It accepts RA-Dec SQL queries over the web and return XML encoded data. The VCC consists of a database and a pair of web servers (spitfire and pyBabel), pyBabel translates the XML stream into the XML format needed down stream, in our case the ggobi format. pyBabel also fires the request to VDS if the cluster information is not yet computed.

The technologies involved: 
pyBabel: The interceptor layer is a python web server that takes in the SQL queries, retransmits them to the Spitfire web server, catches the XML response from Spitfire, translates it for ggobi, and sends it on. 

Spitfire: Spitfire [18] provides grid enabled middleware services for access to relational database. More exactly, it is a set of grid enabled Java servlets running in the Apache Tomcat Java web server, and which acts as a JDBC layer on many relational databases. It allows SQL queries, table updates, and deletions to come in over the web, and the results to go back in XML format.

MySQL: The base database for the VCC is MySQL, as that is what spitfire comes configured to run right out of the box.

3.3 Test Data Grid

The VDS runtime system generates the DAG to compute cluster catalog and send the DAG to the experimental data grid, which allows harnessing multi-domain resources and managing a variety of parallel computations in Grid environment. The test grid includes three major components: the Condor-G agent, the Globus Toolkittm and the Condor system.  

The Condor-G agent allows the user to treat the Grid as an entirely local resource; it executes user computation on remote resources on the user’s behalf, which is transparent to the user, as if the job were running locally.

The Grid Resource Allocation and Management (GRAM) protocol is used for remote job submission and subsequent monitoring and control of the remote computation. GSIFTP serves as the data transfer tool. All data files needed by executables within the grid were pulled to the executing sites, and all data files from executions within the test grid were returned to the submission site at the completion of data derivation jobs.
3.4 Condor Pools

We were using three Condor pools as the grid compute resources: the one at Fermilab, the one in the Computer Science Department at the University of Chicago, and another one at Argonne National Laboratory. Table 3 shows the configuration of each pool:

	Site
	Number of machines
	Number of processors
	Main Frequency
	Available Disk Space

	Fermilab


	5
	10
	500
	900 G

	University of Chicago
	112
	112
	32(1.2GHZ

20(550MHZ

60(400MHZ
	360G

	Argonne National Laboratory
	6
	10
	8(1GHZ

2(200MHZ
	100G


Table 3 Configurations of Three Condor Pools

The number of nodes (processors) at ANL was small, but we had large disk space (The large disks at the UofC pool were added later). We ran the first stage on this pool, because the image data takes up large amount of storage space. After this stage, the data size is relatively small, and since the maxBcg algorithm is very compute-intensive, we ran it on the UofC pool to take advantage of the large number of nodes. The Fermilab Condor pool was used as test grid environment for astrophysists there.

4 Experiences

We successfully set up the grid environment for running cluster-finding codes, built the descriptions of the codes and data dependencies into VDL, integrated the five stages with VDS, and we tested the system with the complete dataset from stripe 10.

4.1 Image Data Size

The stripe 10 consists of run 752 and run756, each run has 6 camcols, each file corresponds to a field. A field is about 0.22°(0.15°, and has 2048(1361 pixels. The stripe is 2.54°(90°.

	         run

camcol
	752
	756
	Total

	
	# of files
	Size (GB)
	# of files
	Size (GB)
	# of files
	Size (GB)

	1
	701
	1.8 
	762
	2.0
	1463
	3.8 

	2
	701
	1.9 
	762
	2.2
	1463
	4.1

	3
	701
	1.9 
	762
	2.2
	1463
	4.1

	4
	701
	1.9 
	762
	2.2
	1463
	4.1

	5
	701
	1.9 
	762
	2.1
	1463
	4.0

	6
	701
	1.8 
	762
	1.9
	1463
	3.7

	Total
	4206
	11.2
	4572
	12.6
	8778
	23.8


Table 4 Image Data Size 

4.2 Setting Up the Grid Environment

We used the Virtual Data Toolkit (VDT) 1.0 package to set up the data grid environment. There are other steps such as applying for host and user certificates, configuring the Globus gatekeeper and Gsiftp server, etc. 

To run the cluster finding codes in these Condor pools, we must set up the environment for running the astrotools. The machines to be installed firstly need to register to Fermilab, and then use the UPS/UPD
 package to download and install astrotools. Since we used shared file system, we only need to set up astrotools on one of the machines in the Condor pool.

4.3 Populate VDS Database

The five stages involve thousands of files, and since VDS decides the dependencies and generates the DAG by keeping track of input and output files, it would be cumbersome to manually put these filenames into the database. We wrote a few shell scripts to generate the VDL descriptions for each stage and feed them into the database automatically. The shell scripts read important control parameters both from pre-tuned parameter files and from the user’s input.

4.3.1 Parameter File Template

The parameter files contains two sets of parameters, one is for control of the code, such as directory structures, the size of the buffer zone, the acceptance threshold, etc. The other contains a lookup table of the expected colors and magnitudes of various galaxies at various redshifts (called the k-correction, for reasons lost in the mists of time).

Many of these parameters are critical to the results of the code, and scientists need to adjust them accordingly under different circumferences. Instead of keeping all the possible parameter files themselves in VDS, we build transformations in VDS, with all the changeable parameters as arguments, and associate them with parameter file templates. At running time, the transformation takes the user’s inputs, substitutes them into the template, and generates the desired parameter file, which is then used by the code. 

The advantage of using parameter file templates is that we only keep a few templates, which can be instantiated conveniently for unlimited times. At the meantime, VDS knows about all the critical parameters in order to rerun the derivation.

4.3.2 Dynamic Mapping

The maxBcg algorithm needs to walk through a buffer zone around the target, to find galaxies around a neighboring spatial area in a cluster. There are two different methods, one is called hexagon, as the name has suggested, only deals with one field at each direction next to the target. The other is a called scanline, which process about 20 fields around the target in a mode designed for low redshift and hence large angle clusters. The size of the buffer zone is defined by two parameters, deltaScanField and deltaScanCol, which specify the number of fields and camcols next to the target to process.


Figure 8 Target and Buffer Zone
Now here comes the problem: the input filenames needed for this stage depend not only on the methods, but also on the buffer size. Also the field numbers for the two strips in a stripe are usually not the same, because different runs start at different place in the sky. Thus there is a run offset between two runs in a stripe.

The list of input filenames and the run offset can be decided by the astrotools code, which maps the RA, Dec pair to a number of filenames. The process of generating the VDL description for the stages bcgSearch and bcgCoalesce is in this sequence:

· Get the parameters from the user, such as run, camcol, startField, endField and from the parameter file, such as deltaScanField and deltaScanCol;

· The shell script generates the derivation necessary to get the file list and run offset for these specific parameters.

· The script updates the VDS database to include the derivation, and makes the request for the information to VDS.

· VDS calls the astro-code to generate the result and returns the result in a file to the script. 

· The script processes the file to extract the information, and generates the VDL.

We call this process dynamic mapping, since the filenames are mapped dynamically from the target region.

4.4 Compute Cluster Catalog

Since the image data files are relatively large, it is expensive to move them around from submitting site to computation site. We ran the first stage – fieldPrep for all the fields, as a data preprocessing stage. In the following sections, the computation will only involve the other four stages, since VDS will not re-generate the data if it already exists, unless it is forced to do so. 
We give the computation time for 1200 files, with 100 files a group. The computation was performed on a PIII-400MHZ PC with 128M memory. There were 6 groups for run-752, and 6 for run-756, note that the run offset between this two runs is 185.  
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Figure 9 Computation Time for Camcol 1 in the First Stage

The average computation time for run-752 was 9.8s per file, and for run-756 it was 14.8s per file. As we usually process these files together, we can assume their average: 12.3s for a file, then for all the 8778 files in this stripe, it would take 30 hours.
Since this stage is to extract galaxies from the image files, the computation time to process a file is proportional to the number of galaxies in the file. We show the number of galaxies in each of these 1200 files below. In run-756, the number of galaxies is much larger than that of run-752.
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Figure 10 Number of Galaxies in Each Image File

4.4.1 A Test Run
We firstly made a small test for a full run of the left four stages: generating the cluster catalog for a single field. In order to get this information, the numbers of fields for these stages are:


getCatalog: 
1


bcgCoalesce:
1 + 2 ( deltaField

bcgSearch:
1 + 2 ( deltaField + 2 ( deltaField

brgSearch
1 + 2 ( deltaField + 2 ( deltaField
As deltaField is typically set to 3, the number at the stage of brgSearch would be 13, which corresponds to 13 ( 12 = 156 field files.

We ran the tests using the Condor pool at the University of Chicago, which had large number of computation resources. Since this Condor pool consisted of machines with different compute powers, it also raised an interesting question as how to configure the jobs in order for them to run efficiently in the pool.
4.4.1.1 The DAG Graph  

We show the DAG that VDS generated for this configuration as follows: 
[image: image12.wmf]
Figure 11 The DAG for Catalog Computation for a Single Field

At the brgSearch stage, each node deals with 7 fields, so there are 24 nodes at this stage. After the brgSearch stage, all the brg files go into the bcgSearch stage, which were divided into 12 nodes. At the bcgCoalesce stage, the camcols from two runs are joined together, so there are only 6 nodes. The 6 camcols are joined to generate the final cluster information.
4.4.1.2 Runtime Monitoring
We developed a few programs which creates web pages dynamically to show the progress of the submitted jobs. 
One of the programs ran at the computation site, which would generate the graph about the job status in the Condor queue during the computation. We show a graph generated during the test run. It includes the total number of jobs, and how many of them were running, how many were idle (waiting to be executed).

[image: image13.wmf]
Figure 12 Condor Queue Status

The other tools use the log file at the submitting site to give detailed computation time for each job at each stage. We show the graphs for the test run below. The left one shows the hosts that run the jobs, and the right one shows the submission, execution and completion time for each job.
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Figure 13 Computation Time for Each Stage

4.4.2 Results
The DAG shown above can be regarded as a building block for larger computation. Chimera can expand the DAG to identify clusters in a much larger area, and branches of the DAG can be pruned if part of the area is already computed. We show here the computation time for 100 fields.
	[image: image16.jpg]
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Figure 14 Computation for 100 Fields
We can observe that at peak time, the system is able to use 54 Condor nodes for the computation. The transitions between different stages are not obvious because there are many parallel sessions going on, and fields far apart don’t have interdependencies, so that some of them may proceed earlier into next stages.
We processed the data of the whole stripe. The computation time depends on the configuration of node numbers in the DAG, the number of hosts harnessed, and the computation power of the hosts. 
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Figure 15 Cluster Distribution
We found more than 60,000 clusters in this stripe. In Figure 15, we show the number of clusters versus the number of galaxies in the clusters, which follow a power law distribution. 
The cluster information computed is returned in XML format to the visualization tool ggobi at the user side, the following graph shows the spatial positions (RA, Dec, z) of clusters which have more than 30 galaxies. There are 18 of such clusters identified in the stripe.

[image: image19.png]
Figure 16 Visualization of Galaxy Clusters

4.5 Implication

The application of Chimera to SDSS also helped to improve Chimera in many aspects.

4.5.1 The Silent Tag

In the original design, for a transformation specification, all the parameters, input and output filenames are regarded as arguments to the executable, and they are passed to the executable at the time of the computation. But for most of the Sloan code, we don’t explicitly need the filenames as arguments; they are just useful for tracking data dependencies. We added a silent tag to the parameter specification, so that these files with the tag wouldn’t go into the argument list.
4.5.2 Data Transfer

The bottleneck is the serial data transfer, which transfers the input files to the computation site, and transfers output files back to the submitting site. VDS used to transfer files one by one using gsiftp. This approach was very inefficient, since we needed to do authentication for each file, and once the transfer for one single file failed, the job had to be cancelled. 

We changed the system to use the tar ball approach, where input files were compressed into one file and transferred to the computation site, and output files were compressed into two files, one for final results, and one for intermediate files. The compression and decompression were carried out transparently. This approach worked very well for the test.
We are also investigating using parallel data transfer, when the file size is very large, or there are other limiting factors to compression.
5 Knowledge-based Representation
One key feature of the VDS is to represent virtual data and keep the data provenance and data lineage information associated with the data during its lifetime. Only by achieving this would the system be able to trace the origins of a specific data object, and automate the process to derive or re-generate the data. It would also facilitate the management, retrieval and sharing of virtual data products, transformations and derivations. As a matter of fact, it was the latter that motivated the virtual data concepts, that scientists would be able to share scientific data, as well as complex analysis procedures applied to the data across large distributed organizations. 
We need a representation model that can be as generic as to be able to represent data of various formats and structures, so that they can be shared across different applications and experiments. In the mean time, we’d also like it to be as precise as to allow automatic discovery and processing.

Ontology provides a shared and common understanding of a domain that can be communicated between people and across application systems. It is the basis for recent Semantic Web effort, which aims to provide intelligent access to heterogeneous and distributed information across the Internet, with software agents serving as mediators, translators, and information brokers.

We’ve been investigating knowledge-based approach to representing virtual data; the overall knowledge framework (ontology structure and relations) can be represented in the following figure:


Figure 17 Knowledge-based Representation

6 Conclusion

In this paper, we described the virtual galaxy cluster system we built by applying the GriPhyN virtual data toolkit to the Sloan Digital Sky Survey cluster finding challenge, we presented the experimental results obtained by testing the system in a data grid environment.  The system keeps track of the derivation procedures and data dependencies for different stages, and it has changed the way that scientists process large amount of scientific data. The data processing used to be in production mode, and scientists have to know every detail of the processing, in order to change parameters and get results of their interests. The concept of virtual data enables them to interact with the system in a request driven mode, where they make requests for data products without caring about where the data locations are and whether or how the data products are materialized.

We are in the process of developing VDS-1, which aims to solve some of the problems we met in applying VDS to different physics experiments and applications.  
We make a clear distinction between transformations, derivations and invocations, where a transformation keeps the information about the function name, its formal parameters, and other descriptive attributes, a derivation calls a transformation and passes actual parameters to the function, and an invocation is that the derivation actually gets run at some time and place.

We design an XML schema as the new VDL to describe the virtual data, which is more powerful and descriptive.  We also plan to use the “dynamic list” which describe a collection of filenames instead of specifying explicitly all the filenames, to overcome the inconvenience of dealing with hundreds or thousands of files.
We also separate the planner into an abstract planner and a concrete planner. The former only deals with logical file names and logical transformations, and generates abstract DAG. The latter makes the decisions as to where and how to carry out the computation.
We plan to build all the current available SDSS data into the virtual galaxy cluster system, and improve the system performance. With the experience of the system, we can further apply the VDT to other SDSS applications such as the weak lensing problem and to other physics experiments as well. 
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Appendices
Appendix 1: Sample Parameter File

#

# file location parameters

#

root .

clusterDir clusters

coreDir cores

brgDir brg

fieldDir fields

catalogDir catalogs

randomDir random

monteDir monte

mcFieldDir mc1

#

# cluster finding parameters

#

filter i

maxZ 0.71 

;# work from  0 <= z <= $maxZ

#

# for the main catalog

#

# deltaZ 0.002

radius 1.00  
;# Mpc H_o =100, measure galaxies interior 

#

# for the rass catalog

#

deltaZ 0.01

# radius 0.33  
;# Mpc H_o =100, measure galaxies interior 

#

#

Lstar -21.0     ;#  L*, i', midway between 2df (-21.25) and LCRS(-20.7)

delLstar 0.75   ;#  $Lstar + $delLstar,

                ;#  more luminous go into E/S0 ridgeline




;# v1_3 had 0.1, with the comment: 




;# at z=0.1, radius is 0.147 degrees

lowZCut 0.71
;# at z=0.07, 0.375 radius is 1360 pixels, a frame.

colorList gr ri

#

# cosmology

#

Ho 100

# q 0.1 

;# q = 0.1 for v2_2

q 0.15 

;# q = 0.15 for v2_3

omega_m = 3

flat 1

spectrum nonpri

type ke

msun 4.53

massLight 295  
;# for the light from galaxies in great clusters




;# from CNOC, corrected to i', and for difference in magLimit

rhoCrit 11.447 
;# 1.9 gms/cm^3 -> msun/Mpc^3

#

# list of mean densitites at which to measure cluster

#

in units of msun/Mpc^3

#
reverse sort, please (high to low)

# densityList 500 200

densityList metric 

# set various thresholds hopelessness:

#

threshold -7.

    ;# threshold of BRG hopelessness:

measureThreshold(like) -5.0 ;# for equal to or greater than accepted

measureThreshold(ngal) 1

coalThreshold(maxBcg) -5.0



coalThreshold(chakBey) 
1
;# number of galaxies other than BCG

coalRadius 1.000  

;# 1 Mpc Ho=100 (r=0.5 Mpc Ho=50)






;# if "metRad" use metric rad






;# if "r500" or "r200", use those

#

# prior knowledge

#

# v3_4 values: doi curves, using steve kent's way of calibration

rest_frame(mag) -22.45

;# moved to one sided probability

rest_frame(mag_sig) 0.57

rest_frame(ug) 1.931

rest_frame(gr) 0.777
;# measured using 7000 galaxies

rest_frame(ri) 0.331
;# which goes to 0.381 with maxBrg 0.8*delZ mod

rest_frame(iz) 0.384

rest_frame(ug_sig) 0.072

rest_frame(gr_sig) 0.050  ;# slightly higher tham measured

rest_frame(ri_sig) 0.060  ;# slightly higher tham measured

rest_frame(iz_sig) 0.040  ;# slightly higher tham measured

# v3_0 values, with Doi curves

# rest_frame(mag) -22.45

rest_frame(mag) -23.20          ;# adding 0.75 magnitudes to luminosity

rest_frame(mag_sig) 0.57

rest_frame(ug) 1.931

rest_frame(gr) 0.705

rest_frame(ri) 0.321

rest_frame(iz) 0.384

rest_frame(ug_sig) 0.072

rest_frame(gr_sig) 0.050  ;# slightly higher than measured

rest_frame(ri_sig) 0.060  ;# slightly higher than measured

rest_frame(iz_sig) 0.040  ;# slightly higher than measured

#

# E/S0 ridgeline parameters

#

e_factor 2.0 ;# ratio of E/S0 to BCG color dispersion

window 1.   ;# perhaps 2*$e_factor*rest_frame($color_sig) as the window

      
   ;# inside which to call galaxies E/S0

# blue_lop 1.5

blue_lop 1.25

#

# scan line parameters

#

# was 10 for v1_3

# delField 10

delField 3

#

# if lower z limit=0.05 and radius=1.00 (H=100), then

# 
angular size of radius is 3 frames scan direction

# delScanField 10

delScanField 3

delScanCol 2

#

# Coalesence and catalog building parameters

#

# consider multiple clusters one if within delZ of each other

#

delZ 0.05

# brgLikeLim -3.25 ;# monte carlo suggest 90% of all BCG w/n this limit

# brgLikeLim -4  ;# monte carlo suggest 97.5% of all BCG w/n this limit

# totLikeLim -1.00

# ngalLim 4
Appendix 2: XML results returned to GGobi

<?xml version="1.0" ?> 

  <!DOCTYPE ggobidata (View Source for full doctype...)> 

- <ggobidata>
- <data name="clusterBox">
  <description>SDSS Clusters as found by the MaxBCG algorithm</description> 

- <variables count="31">
  <variable>run</variable> 

  <variable>rerun</variable> 

  <variable>camcol</variable> 

  <variable>field</variable> 

  <variable>id</variable> 

  <variable>row</variable> 

  <variable>col</variable> 

  <variable>ra</variable> 

  <variable>declination</variable> 

  <variable>primtarget</variable> 

  <variable>r</variable> 

  <variable>i</variable> 

  <variable>gr</variable> 

  <variable>ri</variable> 

  <variable>seeing</variable> 

  <variable>geomet</variable> 

  <variable>photmet</variable> 

  <variable>metrad</variable> 

  <variable>rho</variable> 

  <variable>r500</variable> 

  <variable>l_500</variable> 

  <variable>rho500</variable> 

  <variable>r200</variable> 

  <variable>l_200</variable> 

  <variable>rho200</variable> 

  <variable>brglike</variable> 

  <variable>totlike</variable> 

  <variable>ngals</variable> 

  <variable>l_o</variable> 

  <variable>z</variable> 

  <variable>cluster</variable> 

  </variables>
- <records count="3" glyphType="5" glyphSize="1">
  <record>752 1 3 469 209 415 714 213.74 -0.3496 96 16.0 15.53 1.113 0.468 0.0 1.0 1.0 1.0 4217.0 2.2 288.1 465.0 3.0 288.1 183.0 -0.53 3.66 66.0 245.5 0.1441 0</record> 

  <record>752 1 2 573 247 801 989 229.351 -0.7382 96 16.151 15.675 0.994 0.448 0.0 1.0 1.0 1.0 2310.0 1.8 152.8 450.0 2.4 152.8 190.0 -1.95 1.83 44.0 134.5 0.12012 0</record> 

  <record>752 1 2 599 424 1002 683 233.265 -0.7713 96 15.917 15.413 1.133 0.486 0.0 1. 0 1.0 1.0 2672.0 1.8 169.5 499.0 2.5 169.5 186.0 -0.81 3.16 53.0 155.6 0.14846 0</record> 

  </records>
  </data>
  </ggobidata>
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� g,r,i denote energy fluxes through band passes corresponding to green, red, and beyond red light. The flux is in log, so the g-r notation implies a flux ratio.

� UPS/UPD is the software product version and distribution support infrastructure at Fermilab. It is a set of C and Perl scripts. The database is a set of ASCII flat files pointed to by environment variables. The Fermilab ODS department wants to do some work over the next year to bring more into alignment ups/upd and rpm/autorpm/systracker - which is a layer on top of autormp using CVS as a repository. The other differences between UPS/UPD and RPM that might be relevant are:

a)	ups does not require root access to install software

b)	ups supports the concept of "flavor" and "qualifiers" that provide for the support of different OS and OS environment versions and types. Also, support for node specific s/w startup and configuration.

c)	ups supports startup, shutdown, tailor, configure etc.

d)	as mentioned below ups supports specification of dependencies between s/w packages and upd allows automatic distribution of dependent packages.

For more on UPS, see http://www.fnal.gov/docs/products/ups/. 
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