SDSS and GriPhyN

SDSS Virtual Data Requirements:

A Weak Lensing Map as a Prototype Virtual Data Set
James Annis1, Steve Kent1, Alex Szalay2

1Experimental Astrophysics Group, Fermilab

2Department of Physics and Astronomy, The Johns Hopkins University

Draft v0 April 6, 2001

We examine the Sloan Digital Sky Survey data pipelines in the light of virtual data. After a brief review of the SDSS project, pipelines, and data products, we consider the intersection of GriPhyN interests and SDSS activities. We then suggest that the appropriate prototype virtual data set is a weak lensing map derived from the co-added Southern Survey of the SDSS (where coadd is the process of adding images together). The request for the weak lensing map is a request for a catalog made from the coadded images, the existence or non-existence of which determines the need for running all of the SDSS pipelines, running special coadding code, and re-running the SDSS pipelines. While astronomers naturally focus on the image processing step of the coadd, the bulk of the process is dealing with the same multi-faceted bookkeeping problem that faces all Virtual Data applications. The creation of the coadded South is a challenge that the SDSS collaboration will be solving over the next two years.

21
Introduction

21.1
The Sloan Digital Sky Survey

21.2
The SDSS Data Reduction Pipelines

32
GriPhyN and the SDSS Pipelines

32.1
Mapping the SDSS Pipelines into a GriPhyN Framework

42.2
Description of the Abstracted SDSS Pipeline

52.3
Description of the Factory Mode

53
The SDSS Data Sets

53.1
The Fundamental Data

63.2
Derived Data: The Experience of the Cluster Catalogs

63.3
Metadata: Design for Speed

74
The SDSS Virtual Data Problem 1: Cluster Catalog Generation

75
The SDSS Virtual Data Problem 2: The Southern Coadd

86
The SDSS Virtual Data Problem 3: Spatial Correlation Functions

87
The Southern Coadd Testbed

87.1
Data Sizes

97.2
Design Detail

108
Conclusion

VDT folks want over the next 6 months designs for testbeds. Designs and initial implementations.

The idea of the GriPhyN Google has power. As does Moore style metadata.

And aim this as the design document for the pair of Tier-2 centers.

Is the concept of a scan machine for the imaging data of relevance?

1 Introduction

The analysis of weak lensing signals provides one of the very few direct measurements of mass available to astronomy, and there is great interest in pursing the analysis to the faintest magnitudes and widest sky coverage available. While the main SDSS survey does not reach limiting fluxes faint enough to pursue true weak lensing maps, the SDSS Southern Survey does. In this survey, the same area of sky is imaged 20-60 times and the images added together to produce a image that reaches sqrt(N) times deeper in flux. The sqrt(N) is of interest: while the full complement of imaging data provides the maximal signal to noise, much of the improvement comes in the first handful of images

and thus intermediate coadds are of interest.

We take the challenge of building weak lensing maps as the prototype Virtual Data problem in the Sloan Digital Sky Survey.

1.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey is a project to produce a map the Northern Celestial sky. We are using a 150 Megapixel camera to obtain 5-bandpass images of the sky. The final 5 images are each 1 million by 1 million pixels. We then target the 1.2 million brightest astrophysically interesting for spectroscopy, allowing us to produce 3-dimensional maps of the galaxies in the universe out to 3 billion light years, luminous elliptical galaxies out to 5 billion light years, and quasars out to 10 billion light years. If the spectra were combined row by row into an image, they themselves would be an image of 4096 pixels by 1.2 million pixels.

The survey is performed at Apache Point Observatory in New Mexico, where the specially designed wide field 2.5m telescope is sited, along with its 0.5m photometric telescope and with instruments built by Princeton and Johns Hopkins University. The data are reduced at Fermilab using pipelines constructed by Princeton, University of Chicago, The US Naval Observatory, Fermilab, and the Johns Hopkins University.

1.2 The SDSS Data Reduction Pipelines

There are a large number of pipelines that run more or less sequentially on the SDSS data.

Pipeline

Function

SSC

preliminary astrometric information

Astrom

calculate the astrometric calibration

Postage Stamp

determine the point spread function

Photo

measure objects in the frames

Mtpipe

calculate the photometric calibration

Nfcalib

apply the photometric and astrometric calibrations

Opdb

store the data used in operations

Target

select targets for spectroscopy from the data

Tile

optimize the placement of the spectroscopic plates

Plate

design the plates: take sky coordinates down to machine drilling x,y

Spectro-2d

extract the 600 fiber spectra from the 4 spectroscopic images

Spectro-1d

measure the redshift and classification of the spectra

SX

the catalog science database

Atlas-DB

the atlas image/spectra science database

All of these pipelines are glued together by an overarching pipeline called DP whose sole job it is to get the outputs from one pipeline into the next pipeline. The interfaces to these pipelines are controlled by a data model held under change control; this is necessary but not sufficient.

2 GriPhyN and the SDSS Pipelines

2.1 Mapping the SDSS Pipelines into a GriPhyN Framework

A big challenge for GriPhyN is to capture as much as possible the ability to generate every possible reduced data set, presuming that only the raw data are maintained permanently. This is indeed a big challenge, particularly for the experiments, where data processing pipelines are incompletely automated. However, it is an interesting exercise to see if one could describe the steps in SDSS data processing in a way that is generic, modular, and could be exercised in a framework envisioned by GriPhyN. Indeed, a major challenge of GriPhyN is to define a model for data processing that is tractable for experiments to implement, general enough to meet the needs of a diverse set of experiments, and useful enough to be desirable in a distributed "grid" environment.

The SDSS data processing is file oriented, as are the LIGO examples that we have seen. Atlas/CMS are object oriented. Certain SDSS queries will also be object oriented (given an ID for an object on the sky, give me a full set of data) - however, the object ID can always be mapped to a file that contains the object, so the translation is easy. I think of these as data requests. More interesting situation will involve queries against attributes that may not exist - e.g., return data for an object nearest a given position on the sky. This cannot be done if there is no catalog of objects in the first place; instead, there must be a mechanism to convert the query over objects into a query on attributes of request-able "objects" (which, in the SDSS case, are mapped into all files that such objects might reside in).

Data processing in SDSS is procedure oriented: start with raw data, create processing jobs (multiple stages), output files are created at the end. For a GriPhyN environment, we really want to go the other direction: given a file, say, what is needed to create it? This requires thinking of the data processing flow in "reverse order".

2.2 Description of the Abstracted SDSS Pipeline

Since data processing consists of running a series of pipelines, we wish to characterize each pipeline in the same fashion, so that the totality of processing is the combination of a number of modular steps.

In SDSS land, we call this the "factory".

A single pipeline has inputs and outputs of the following flavors:

INPUTS:

 1. A plan file that defines which set of data are to be processed,

the root directories for input & output files.

 2. One or more parameter files - tuning parameters applicable to this

particular set of data. Often there is a default set of parameters

provided with the pipeline code. Occasionally these are

overridden to handle special properties of the data.

 3. Various input files, that are the products of upstream pipelines.

The pipelines usually have internal knowledge of how such files

are named and located relative to the root directories.

 4. Environment variables. These are used to define which versions of

pipelines are being run. A single pipeline may have multiple

dependent products. Normally, though, the version of a pipeline

product is uniquely related to the versions of all dependent

products.

OUTPUTS:

 1. Output files that are the data products themselves

 2. Log and error files

 3. Quality control files. These identify any outputs that are

flawed such that subsequent pipelines cannot run. They do not

identify outputs that are out of bounds regarding a quality

threshold but do not impede the running of a follow-on pipeline.

 4. A single status flag. 0 = next pipeline can run, 1 = hand intervention required.

A complete "job" consists of the following steps:

1. Preparation. Stage any inputs that are needed. Create plan files, usually based

 on some rules about where directories are located.

Make sure disk space is available. Inputs needed from previous

pipelines are checked by looking for a "QC" file produced by any upstream pipelines.

 2. Submit the pipeline job. The pipeline usually receives a few key

inputs, such as the location of plan files. Return 0 or 1.

 3. Run a status verify job that checks if the submitted job did complete.

 4. Run a pipeline verify job to generate QC information and starts

the follow-on pipeline. Return 0 or 1.

 5. Run a "scrub" job that removes most files once they

have been archived. The archiving is itself a "pipeline"

What would be required to invert the above procedure - i.e., given a request for a particular output file, what additional work is needed to trigger the required processing? This is an area of a bit of research.

2.3 Description of the Factory Mode

The factory itself is the DP scripts that join together the pipelines. There are 3 generic stages of the factory at each and every pipeline:

1. Prep

generate plan file

make relevant directories

make sure the relevant data is available

make relevant sym links

locate space

register the resources reserved in a flat file database

Call submit

2. Submit

generate a shell script the fires off the batch system submit

Call ender

3. Ender

periodically check status of a pipeline submit by looking for

the files that should be created. The existence of the

files is necessary and almost sufficient for the next step

to succeed.

after completion of the pipeline, run a quality control script,

where various quantities (e.g., the number of galaxies/image)

are given a sanity check. if QC checks, then

Call Prep for the next pipeline.

These are daisy chained: the first invocation of Prep takes as an argument how many of the following pipelines to run in series.

3 The SDSS Data Sets

3.1 The Fundamental Data

The fundamental data products of the SDSS are:

catalogs
measured parameters of all objects

500 Gig

atlas images
cutouts around all objects

700 Gig

binned sky
sky leftover after cutouts, binned 4x4

350 Gig

masks

regions of the sky not analyzed

350 Gig

calibration
a variety of calibration information

150 Gig

frames

corrected images

10 Terabyte

where the totals are for the complete survey. The Southern Survey, taken run by run amasses to 2/3rds of those totals.

Mapping the SDSS pipelines into the GriPhyN framework is the program of making all of these data products capable of being virtual data, derivable on the fly.

3.2 Derived Data: The Experience of the Cluster Catalogs

Astronomy has many derived datasets. One of the clearest examples is the identification of clusters of galaxies. Nature has made a clean break at the scale of galaxy masses: at the scale of galaxies and below the objects are cleanly identifiable as single entities (there is no question that Andromeda is a galaxy), while above that scale the entities are statistical (the local group is not as well defined as Andomeda; clusters of galaxies likewise blend into their surroundings).

Since there are many different ways to describe a cluster of galaxies, there are many different ways to catalog them. The SDSS currently is exploring 6 different cluster catalogs. One question (“where are the clusters”) has 6 different answers, all of which are approximations to the truth.

As a concrete example consider the following. As of this writing the cluster catalogs consist of:

Catalog

Description

Area of Sky Covered on Equator

MaxBcg

red galaxy search

0-70 degrees, 130-250 degrees

MF

spatial/luminosity profile
0-70 degrees

Voronoi Tessellation
voronoi tessellation

0-70 degrees

Cut and Enhance
spatial/color search

0-70 degrees, 130-250 degrees

C4

color-color space

0-70 degrees (?)

Velocity Dispersion
velocity space

0-60 degrees

Cluster catalogs are a very good virtual data example. The data request may be to run the algorithm at a given place in the sky or it may be to download the full scale cluster catalog from a region of sky (or produce it). There are problems of keeping track of the input galaxy catalogs, of the version of the cluster finding codes and associated the parameter sets. We have found it useful to use the output of one cluster catalog as the input to the other cluster catalogs, as each method has measurement fortes and weaknesses: here is a self-referencing example of transformation chaining.

And there is a need for keeping track of the cluster catalogs and what part of the sky they have been run on. There is a need for the infrastructure GriPhyN is designing.

3.3 Metadata: Design for Speed

The metadata requirements for SDSS catalog very naturally map from the concepts of the FastNPoint codes of Andrew Moore and collaborators. In this world view, Grid Containers are not files or objects, but nodes of a kd-tree (or better, some other tree structure with better data insertion properties). In this view what matters for performance is the ability to know what is in the container without having to actually read the container. Consider a metadata example listing the most useful quantities in astronomy:

Ra, Dec
position on sky

bounding box

Z

redshift

bounding box

r

r-band brightness

bounding box

g-r

g-r color

bounding box

r-i

r-i color

bounding box

Given just those quantities in the metadata catalog, the execution time for a range search can be brought down from N^2 to N log N. The central ideas are exclusion (if the range to be searched for does not cross the bounding box, one need not read that container) and subsumption (if the range to be searched for completely contains the bounding box, one needs the entire catalog, again not reading the container).

Furthermore, there are great possibilities for speed up if one is willing to accept an approximation or a given level of error. Clearly the majority of time in the range search above is spent going through the containers that have bounding boxes crossing the search; it is also true that often this affects the answer but little, as the statistics are dominated by the totally subsumed containers. Having the relevant metadata in principle allows the user to accept a level of error in return for speed.

Often what one is doing is to compare every object against every other object. The tree structure above gives considerable speed up; another comparable speedup is allowed if the objects of interest are themselves in containers with metadata allowing the exclusion and subsumption principles to operate.

These considerations also suggest that a useful derived dataset will be tree structures built against the Grid containers, with the relevant metadata built via time-consuming processing but then available quickly to later users.

4 The SDSS Virtual Data Problem 1: Cluster Catalog Generation

Virtual data par excellence

5 The SDSS Virtual Data Problem 2: The Southern Coadd

Data intensive science. The data sizes involved in the processing are hundreds of Gigs.

We take as the virtual data driver the science of analyzing the weak lensing map of the Southern coadded data. First things first: the southern coadd must be created, and that is only possible using existing data.

1) The Southern Survey Coadd

run full pipelines on incoming data

given an area on which to coadd,

find relevant reduced data

find disk space and compute power

extract relevant reduced data from long term storage

build mapping function from calibration data

perform coadd to create new reduced data

keep track of intermediate coadd catalogs and data

2) Run weak lensing analysis on the intermediate coadded south

locate atlas images on disk

compute optimal shape parameter

produce shape catalog

Clearly the right approach to the existing SDSS factory is to place it as a single coherent entity into the GriPhyN framework, as opposed to trying to put the individual pipelines into the framework.

Solving this problem provides avenues for future progress. One vision of the SDSS/NVO team is to spin the SDSS data on a compute cluster and allow for demand driven re-reduction with the ever-improving versions of Photo. Of course, one cannot just run Photo, as it is the center of a long processing chain, but it is exactly this processing chain that must be made demand driven to solve the weak lensing map problem.

6 The SDSS Virtual Data Problem 3: Spatial Correlation Functions

The statistics of the spatial correlations between galaxies is of great interest in cosmology because they are close related to mass fluctuation power spectra. The SDSS will allow these correlation functions to be measured and analyzed as a function of galaxy properties (e.g. magnitude, surface brightness, spectral type). Each correlation function is computationally expensive, and very often the results are used as input to another layer of sophisticated codes. Correlation functions are thus a good example of virtual data where a premium will be placed on locating existing materializations before requesting an expensive new materialization.

These are catalog based problems, so the computational aspects dominate the data transfer aspects. The codes of interest can be N^2 and parallelizable or N log N and requiring large amounts of memory.
7 The Southern Coadd Testbed

7.1 Data Sizes

The components of any given 200 sq-degree coadd of the south come to:

catalogs
measured parameters of all objects

 10 Gig

atlas images
cutouts around all objects

 15 Gig

binned sky
sky leftover after cutouts, binned 4x4

 7 Gig

masks

regions of the sky not analyzed

 7 Gig

calibration
a variety of calibration information

 3 Gig

frames

corrected images

 Nx200 Gig

7.2 Design Detail

1. given an area on which to coadd,

a. Take user input

2. find relevant reduced data

a. Query either a db or a flat file for the the runs that have

been observed and extract the list of runs that are of

the right strip.

b. Using that list, determine which runs overlap the given area.

Involves the calculation of a spatial intersection.

c. Apply cuts against data that are not of high enough quality to use

(even though other parts of the run may be.)

d. Estimate how much data is involved.

Metadata: a list of runs and portions of runs involved

3. find disk space and compute power for input data, processing, and outputs

a. Query the local network for available machines

b. Query the local network for available storage

c. Reserve the resources for a period of time

Metadata: a list of machines

4. extract relevant reduced data from storage

a. From some knowledge base, determine for each run if the data is:

1) on archival disk

2) on production disk

3) on fast tape

4) on slow tape

b. Arrange to get the data off the media and onto the production

machines

Metadata: a list of portions of runs and where they live on

production disk

5. build mapping function from calibration data

a. An image is a 1361x2048 array of pixels. In general two images

of the "same" piece of sky will be:

1) slightly offset in both x and y

2) slightly rotated

3) have different small distortions as a function of x,y superimposed

4) have different conversion between pixel value and energy flux

b. These translations, rotations, distortions, and scalings are

calculateable from a set of calibration information that may or

may not be kept as a header to the data itself.

c. Find the calibrations, and build the mapping function for each pixel

Metadata: computed mapping functions to be applied to the data

6. perform coadd to create new reduced data

a. Load a set of co-located images into memory

b. Apply mapping function

c. Perform median or average on stack of pixels (in truth: apply

very clever algorithm to make maximal use of information

and minimize noise)

d. Save output to disk.

Metadata: Location of output data

7. run full SDSS pipeline on new data set

a. arrange for all necessary input files to be in place

b. arrange for all 10 pipelines to run

c. watch success or failure of the pipelines

d. save resulting outputs to disk

Metadata: Location of output data

8. keep track of intermediate coadd catalogs and data

a. The output of 6. is to be preserved, as 7. can be done multiple times

b. The output of 7. is to be preserved

c. Each time new data comes in, the above is done.

9) Run weak lensing analysis on the intermediate coadded south

a) locate atlas images on disk

b) compute optimal shape parameter

c) produce shape catalog

8 Conclusion

The Southern Survey Coadd presents a local, manageable version of the full Virtual Data problem, and one which exhibits most of the major challenges of the full problem. Our collaboration will be ramping up to perform the Southern Survey over the next two years, and one way or another we will surmount the challenges and produce the weak lensing map. However, our activities during the process present the GriPhyN collaboration with an opportunity for alpha testing of tools, techniques, and ideas.

PAGE
2

